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Abstract

In this paper we present a method to address the degradation of diffusion synthetic acceleration

(DSA) methods in problems with material discontinuities and high scattering ratios, as shown in Part I.

Our solution is to simply replace traditional source iteration with a Krylov iterative method that is

preconditioned with the partially consistent simplified WLA DSA scheme. We describe how we can solve

the lumped, linear discontinuous discretization of the first order form of the SN transport equation on

unstructured tetrahedral meshes using the Krylov iterative method GMRES. One attractive feature of

this approach is that it can be implemented in terms of the original SN space and angle sweeps with

very little code modification. Computations on problems for which DSA–accelerated source iteration is

impractical are compared to solutions with preconditioned GMRES. Results will show that the partially

consistent DSA scheme is an effective preconditioner and such problems can now be solved efficiently.



1 INTRODUCTION

In the first part of this paper, we identified a class of problems that contained multiple highly diffusive

materials with discontinuous total cross sections. In these types of problems, traditional DSA schemes, both

fully and partially consistent, lost their effectiveness in accelerating the source iteration process. In Part I, we

considered a lumped, linear discontinuous finite element (DFEM) discretization of the SN transport equation

on three–dimensional unstructured meshes.1,2 We presented a Fourier analysis and numerical examples to

illustrate the deficiencies of two DSA schemes for those kinds of problems. In this part, we present a way

to solve this class of problems efficiently by simply replacing accelerated source iterations with a Krylov

iterative method that is preconditioned with DSA.

Our approach follows the work of Ashby, et al.3 and Guthrie, et al.,4 where the Krylov iterative method

GMRES, preconditioned by DSA, replaces traditional source iteration on the scalar flux in one–dimensional

slab geometry SN transport problems. We extend their approach to three–dimensional unstructured tetra-

hedral grids. The kinds of difficult problems presented in Part I converge unacceptably slowly because of a

degradation in the spectral radius. Our implementation of the Krylov method on these kinds of problems

shows that (a) the unpreconditioned Krylov method accelerates the transport solution, although not always

as well as accelerated source iteration, (b) convergence is vastly improved if the Krylov method is precondi-

tioned with DSA (c) the Krylov method restores the effectiveness of the simplified WLA (S–WLA) method,

which is a partially consistent DSA scheme.5 While this last observation is probably also true for the fully

consistent DSA (FCDSA) method, the high cost associated with solving the fully consistent equations is

unacceptable, particularly because it is shown in Part I that the degradation in its effectiveness is similar

to that of the partially consistent method in the presence of material discontinuities. Therefore we will only

consider the less costly S–WLA method for preconditioning the Krylov iterations. We will find that any

extra computational overhead associated with the Krylov solver is outweighed by the drastic reduction in

the number of iterations relative to S–WLA accelerated source iteration, although the relative improvement

decreases with decreasing scattering ratio.

A nice feature of the Krylov method approach is that it can be “wrapped around” the original source

iteration code so that only minor changes to the inner iteration code is necessary. Energy dependent iterations

or other outer iterations would require more significant code modification. Extension to these types of

problems is straightforward but comes at the cost of increased computer memory requirements. In this

paper we consider only steady–state, one–group problems with isotropic scattering, but the method extends

easily to anisotropic scattering. Extensions of the Krylov iterative method will be considered in future work.

The paper is organized as follows. We will discuss the implementation of the Krylov solution method

in the next section. The following section will present numerical results using the AttilaV2 host code for

some problems of the kind discussed in Part I. The paper concludes with some conclusions drawn from our
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implementation and directions for further work.

2 KRYLOV ITERATIVE METHODS APPLIED TO TRANSPORT PROBLEMS

We will begin this section with a discussion of the relevant previous work on applying a Krylov iterative

method to first order, SN transport. Then we will present what we will refer to as the scalar flux formulation

of the SN transport equation. The section closes with a discussion of some of the implementation issues that

had to be addressed.

2.1 Related Work

There has been a fair amount of work during the past decade in applying Krylov methods to transport

problems in various contexts. The paper by Faber and Manteuffel6 analyzed the properties of DSA and

preconditioned conjugate gradients (PCG) to solve symmetric forms of the transport equation in one dimen-

sion. Kelley7 used GMRES at the lowest level of a multi–level acceleration scheme and Kelley and Xue8 then

considered the use of GMRES in the context of accelerating solutions of the transport equation and how

properties of integral operators can be used to improve the GMRES iterations in one dimension. Oliveira

and Deng considered nonsymmetric Krylov methods9 and iterated on the angular flux in one dimension.

They showed results for GMRES, CGS and CGNE Krylov methods (see Ref. 10 for a description and defini-

tion of these and other related methods) preconditioned with ILU, spatial multigrid and angular multigrid

techniques. Patton and Holloway11 also considered the nonsymmetric equations for the angular flux and

compared GMRES with and without DSA preconditioning to source iterations in one dimension. Sanchez

and Santandrea12 consider a symmetrization of the transport operator and use the Lanczos algorithm (which

is mathematically equivalent to CG if the operator is positive definite) with the method of characteristics in

two dimension and compare the results to DSA. Patton and Holloway13 investigated using preconditioned

GMRES for the angular flux, including energy dependence and algebraic preconditioners such as incomplete

LU factorizations in one dimension.

Ashby, et al.3,14 and Brown,15 and later Guthrie, et al.4 formulated the problem in terms of the scalar flux

(moments). This has the advantage of significantly reducing the dimension of the problem. It is interesting,

however, to note that Guthrie, et al., did not reference these earlier papers. Greenbaum16 also used this

approach in her textbook where she considered one dimensional slab geometry transport preconditioned with

DSA to illustrate how nonsymmetric Krylov solvers can be used for solving “real” problems. Ramone, et

al.,17 used such an approach in one dimensional slab geometry to solve the low–order transport synthetic

acceleration equations with PCG. Zika and Adams18 extended this approach two two–dimensional Cartesian

geometry.

The ideas most influential on the work we are presenting here those of Ashby, et al.,3,14 and Guthrie, et

al.4 Ref. 3 appears to be the first work exploring the merits of Krylov subspace methods (GMRES) relative
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to the Richardson (source) iteration that has traditionally been used in transport applications in the general

nonsymmetric case. Both diamond and linear discontinuous differencing of the SN equations were considered.

This paper was apparently a preliminary version of the very detailed linear algebraic analysis, also in one

dimension, of DSA and transport solution methods in Ref. 14. This was followed by the extension of their

analysis to three–dimensional cartesian geometry in Ref. 15. The last two papers papers worked with the

diamond differenced SN equations, and computed the spectral radius of the preconditioned linear system

explicitly for a variety of physical situations, including the thick and thin asymptotic limits. They analyzed

the effectiveness and efficiency of using both consistent and inconsistent DSA methods for source iteration,

Chebyshev iteration, and GMRES. Ref. 4 provides an enlightening discussion on how GMRES generates an

optimal linear combination of the previous scalar flux iterates. They present their approach as a multi–step

acceleration scheme, even without DSA as a preconditioner to GMRES. Their numerical results address not

only the effectiveness of the approach in improving convergence but also the computational efficiency relative

to accelerated source iterations.

These papers show similar numerical results with similar conclusions regarding the effectiveness and

efficiency of GMRES preconditioned with DSA. However, Ashby, et al.,14 and Brown,15 put emphasis on the

analysis of DSA as a preconditioner and the linear algebraic formalism that facilitates their analysis while

Guthrie, et al.4 focused primarily on how to implement the iterative solution in terms of transport sweeps

and the properties of the Krylov method iterative solution. In our view, the most important feature of all

these works is that the matrix–vector operations that need to be computed in the course of a Krylov iterative

solution can be carried out without explicitly forming a matrix. It can be implemented via the usual space–

angle transport sweep, scattering integral calculations, and scalar flux moment computations. Considering

other work on Krylov iterative methods on the full angular flux we feel that the scalar flux formulation

they presented is more promising, especially if the method is implemented within an outer iteration. This is

because the Krylov iterative method can be implemented with only minor code modification and a reasonable

amount of extra storage. As explained in Ref. 4, the Krylov method combines previous iterates in such a

way as to accelerate convergence. As long as the additional computational overhead of the Krylov method

is not too great then it seems reasonable to “augment“ the usual source iteration process and make use of

information that has already been computed.

Ashby, et al.,3 considered an inconsistent DSA discretization whose effectiveness degraded in the presence

of two very different materials. While it was totally ineffective in accelerating source iteration they found

that convergence improved significantly when it was applied as a preconditioner to GMRES. Their work

presaged the difficulties we encountered in Part I of this paper. They state in their conclusion, “These results

have possible implications for problems in higher spatial dimensions, for which a consistent preconditioner

is difficult to obtain and/or impractical to apply.” Furthermore, as Brown15 points out, if the diffusion
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equation in the DSA algorithm isn’t solved exactly or some other approximations are made, “. . . the use of

these methods in three dimensions will be crucial to the overall usefulness of DSA in 3–D problems,” referring

to “. . . more powerful iterative methods such as Bi–CGSTAB . . . ”. Indeed, this is exactly the case for our

linear discontinuous SN transport discretization on three–dimensional unstructured tetrahedral grids. The

FCDSA algorithm is prohibitively expensive to employ. Only the partially consistent S–WLA DSA method

remains feasible for general purpose. This is because, as a preconditioner to a Krylov iterative method,

it remains effective even in the kinds of heterogeneous problems we are considering here. Furthermore,

the overall transport solution can be computed efficiently because the S–WLA method computations are

inexpensive.

2.2 Scalar Flux Formulation

In this section we will present the scalar flux formulation that we use in solving the transport equation.

We will work in a general operator notation. Details of the definitions of these operators can be found

in Part I of this paper. Vectors are lower case having dimension n = N(L + 1) where N is the number of

spatial grid unknowns and L is the order of scattering anisotropy. For the linear discontinuous discretization,

N = 4Ncells, where Ncells is the number of tetrahedral cells in the mesh. Operators are of order (n × n)

denoted in bold uppercase; I represents the identity.

Source iteration, or Richardson iteration, is probably the most commonly used iterative solution method

for the first order SN transport equation because it can be efficiently implemented via an angular sweep.1 In

standard notation the discrete ordinates transport equation is

Lmψm = SKψm +Q0, Bψm = gm, (1)

and ψm is the angular flux in quadrature direction m, Lm is the streaming–plus–removal operator for angle

m which is inverted by the angular sweep algorithm, S represents the scattering operator, K is the angular–

flux–to–moment operator, and Q0 is an isotropic source of particles. The boundary conditions on the angular

fluxes, Bψm, are a function of angle depending on incoming and outgoing directions relative to the orientation

of the quadrature direction with respect to the boundary faces. We indicate this dependence by the angular

function gm. We consider only the standard vacuum, source, and reflective conditions. Ignoring boundary

conditions for the time being, in terms of the scalar flux moments, Eq. 1 is solved with the iteration

φ`+1 = TSφ` + b, (2)

given some initial guess φ0 to the the scalar flux. Here the operator T = KL−1
m and b is a source vector.

Again, more details can be found in Part I.
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With DSA, the iteration is modified by a correction step as follows

φ`+1/2 = TSφ` + b (3a)

f `+1/2 = D
−1

S

(

φ`+1/2 − φ`
)

(3b)

φ`+1 = φ`+1/2 + f `+1/2, (3c)

The operator D−1 involves the inverse of the diffusion equation or the inverse of the P1 equations. It may

consist of several other operations as well. In the case of the S–WLA algorithm, for example, involves the

approximate inversion of the vertex–centered, linear continuous finite element discretization of the diffusion

equation. The solution to that SPD linear system can be computed efficiently using preconditioned conjugate

gradients (PCG). The source term for the solution is calculated by projecting the discontinuous scalar flux

residual S
(

φ`+1/2 − φ`
)

onto the vertices. The solution is then interpolated to compute a correction to the

discontinuous zeroth–order transport scalar flux moments.

We can show that the DSA algorithm is equivalent to a preconditioning the transport operator as follows.

First, consider that Richardson iteration for some linear system Ax = y is simply

x`+1 = x` + r`

= x` +
(

b− Ax`
)

= (I − A)x` + y.

(4)

Comparing this with Eq. 2, we find that the linear operator corresponding to source iteration is A =

(I − TS). Now Richardson iteration for the (left) preconditioned linear system M−1Ax = M−1y is

x`+1 = x` + M
−1r`

= x` + M
−1

(

y − Ax`
)

=
(

I − M
−1

A
)

x` + M
−1y.

(5)

Recall that preconditioning will be effective if M−1 is in some sense an approximation to A−1. The pre-

conditioner may be computed explicitly in advance or it may involve the solution of another linear system,

Mw = z, for example, which might need to be computed iteratively or approximately at every iteration.

The overall solution will be computed more efficiently only if the preconditioning system can be computed

relatively easily.
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Collapsing the DSA algorithm, Eqs. 3, into a single operation gives

φ`+1 = TSφ` + b+ D
−1

S
(

TSφ` + b− φ`
)

=
[

I +
(

I + D
−1

S
)

(TS − I)
]

φ` +
(

I + D
−1

S
)

b

(6)

which, by comparison with the Eq. 5, shows that the DSA algorithm is just Richardson iteration for the

preconditioned system
(

I + D
−1

S
)

(I − TS)φ =
(

I + D
−1

S
)

b. (7)

We can see that
(

I + D−1S
)

is in fact an approximation to the inverse of (I − TS) as follows. The

computation of the error estimate in Eqs. 3, f `+1/2 = D−1S
(

φ`+1/2 − φ`
)

, is an approximation to the error

equation

(I − TS)f `+1/2 = TSr`, (8)

where f `+1/2 = (φ− φ`+1/2), r` = (φ`+1/2 − φ`), and φ is the exact solution to Eq. 2. Examining Eqs. 3 it

is evident that

D
−1

S ≈ (I − TS)
−1

TS = (I − TS)
−1

− I, (9)

or, in other words,
(

I + D
−1

S
)

≈ (I − TS)
−1
. (10)

It is the preconditioned linear system, Eq. 7, that we will solve with a Krylov iterative method, which

we implemented as follows. Assume for the moment that we are solving the preconditioned linear system

M−1Ax = M−1y. At every iteration, the Krylov method supplies a vector v to which the linear system

is applied, that is, the vector z = Av is computed and returned to the Krylov solver. Subsequently, the

linear system Mw = z is “solved” and the vector w is returned to the solver. This allows us to compute the

“action” of the preconditioner on the vector z without the inverse matrix M−1 being available.

However, we do not actually use the preconditioned version of the Krylov algorithm where we would

have to first apply the linear system to v, z = (I − TS)v, and subsequently compute the action of the

preconditioner on z, w = (I + D−1S)z, as we would if DSA were being used as a preconditioner. Instead,

we use the unpreconditioned version of the Krylov method. At every iteration we set φ` = v, compute the

sequence of operations shown in the DSA algorithm, Eqs. 3, with the original source iteration code. We then

return w = v − φ`+1 to the Krylov solver, which completes the operator (I − TS). Collapsing the solution

process into a single operation shows that this approach is fully equivalent to preconditioning in the usual

sense but requires much less code modification because the Krylov solver can just be “wrapped around” the

source iteration code with the addition of just the final step w = v − φ`+1. Implementing the iteration this

way makes it much easier to treat reflective boundary conditions, which will be discussed in greater detail
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below.

2.3 Implementation Issues

There are several issues which had to be addressed in the course of implementing the Krylov iterative solution

method. We will discuss a few of them now, but before doing so it should be noted that we have tried to

make the implementation of the Krylov iterative solver approach as efficient as possible but there is still

room for improvement. AttilaV2 is currently a serial program written in Fortran 90 so our approach and

conclusions might change if the method is implemented in parallel.

2.3.1 Choice of iterative method.

There are many choices to be made when choosing a Krylov iterative solution method. One typically chooses

an iterative solver when a matrix is sparse, when direct solution methods are impractical, or when the matrix

is not explicitly computed. In our case we do not explicitly compute the discrete SN transport equation matrix

because source iteration is implemented via an angular sweeping algorithm which is matrix–free and very

efficient.

We will review how we arrived at our choice of using GMRES. The reader can consult any number of

recent texts on Krylov methods for further information including, for example, Refs. 10, 16, or 19. The

first choice concerns the symmetry of the matrix. The CG, MINRES and SYMMLQ methods are used for

symmetric systems; the first of these is used if the linear system is positive definite and the latter two if it is

indefinite. These methods are very efficient and require additional storage consisting of just a few auxiliary

vectors. The transport operator, as formulated in Eq. 1, is symmetric only under certain circumstances. We

have therefore decided to use a method intended for nonsymmetric linear systems in order to make a fair

comparison with source iteration which is not constrained by symmetry considerations. Also, further possible

complications such as symmetrization of the transport operator12 or the need for specialized quadratures or

inner products, will not be necessary, so we can implement the Krylov iterations with very little change to

the original source iteration algorithm. We must therefore use a method intended for nonsymmetric linear

systems. These include only the transpose–free methods, such as GMRES (Generalized Minimal Residual),

TFQMR (Transpose–Free Quasi–Minimal Residual), Bi–CGSTAB (Bi–Conjugate Gradient Stabilized), or

CGS (Conjugate Gradient Squared), because we cannot easily use methods for which the transpose of the

linear system is required.

In our experience we have found GMRES to be the most reliable and most rapidly converging nonsym-

metric Krylov method.2,20 The convergence behavior of simple iterative methods like Richardson iteration

or Krylov iterative methods for symmetric systems is well–understood in terms of the eigenvalues of the

linear system. In contrast, there is very little that can be done to accurately predict or estimate the con-

vergence of nonsymmetric Krylov iterative methods, except under special circumstances. Even if available
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the estimated bounds may not be sharp. While this is not entirely satisfactory, we do not consider this

lack of a priori knowledge about convergence to be restrictive because our computational experience so far

indicates that GMRES is very robust for this application. Another possible drawback of GMRES is that

storage and computational effort both increase linearly with every iteration. This can be limited to some

extent by restarting every m iterations; the restarted version of GMRES is called GMRES(m). For reasons

outlined below we have chosen the flexible version of GMRES(m), denoted FGMRES(m).

2.3.2 Distributed sources and boundary conditions.

The two concerns to be discussed now are the implementation of distributed sources and boundary conditions.

We consider only isotropic sources, both boundary and distributed, in this paper.

In our implementation, the source vector b in Eq. 2 not only represents the uncollided flux due to

distributed sources, as in Part I, but it also contains any incident boundary sources as well. This can be

made clear by the following considerations (see also Ref. 3). Let ψ0
m be the homogeneous solution to Eq. 1

with inhomogeneous boundary conditions:

Lmψ
0
m = 0, Bψ0

m = gm. (11)

Now, given some right hand side, s, and homogeneous boundary conditions, the solution ψm to Eq 1 can be

written as

ψm = L
−1s, Bψm = 0. (12)

Linearity implies that the complete solution to Eq. 1 with right hand side s and boundary condition Bψ0
m =

gm is

ψm = L
−1s+ ψ0

m. (13)

Substituting the full right hand side, including the scattering operator, of Eq. 1 for s in this last expression

gives

ψm = L
−1 (SKψm +Q0) + ψ0

m. (14)

Operating on this expression with angular flux–to–moment operator K we find that

φ = KL
−1

Sφ+ K
(

L
−1Q0 + ψ0

m

)

, (15)

which is just Eq. 2 (iteration indices omitted) with the source term b = K
(

L−1Q0 + ψ0
m

)

. Thus, we initialize

the source vector b with a single transport sweep before we enter the Krylov iterative solver and then set

any distributed or boundary sources to zero in subsequent calls to the transport sweep algorithm once the

Kylov iterations begin.
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In the host code, AttilaV2, specular reflection boundary conditions are constrained to be applied only

on boundary faces which are oriented parallel to the coordinate axes. Reflecting boundary conditions are

treated implicitly. This means that at any given iteration the incoming angular fluxes are assumed to not

necessarily be equal to the outgoing angular fluxes on the reflective faces. Implicit treatment allows for the

possibility of opposing reflecting boundary faces. It is not necessary if the transport sweep can be ordered

such that the angular sweeps are started on reflecting boundary faces only after the sweep has computed all

the outgoing angular fluxes on those faces. In AttilaV2, all reflecting faces are treated implicitly to simplify

code logic, regardless of the transport sweep ordering, at the expense of additional storage. The angular

flux unknowns on reflecting faces must be appended to Krylov iteration vector and iterated upon during

the Krylov iterations because these angular fluxes, like the scalar fluxes, are fundamental unknowns in the

problems. This is necessary whether reflection is treated implicitly or not.

Because the Krylov iteration is wrapped around the original source iteration coding, the only requirement

needed to treat reflective conditions is to augment the vector of scalar flux moments with the angular fluxes

on the reflective boundary. Thus, the transport iteration now has the form

φ̃`+1/2 = T S̃φ̃` + b̃ (16)

where the vector φ̃ contains not only the scalar flux moments φ but also the boundary angular fluxes,

represented by ψR, that is

φ̃ =







φ

ψR,m






, (17)

and the source vector is now b̃ = [b 0]
T
. The scattering operator is also augmented with the portion of

the boundary condition operator that not only specifies vacuum and source conditions but also relates the

incoming to outgoing angular fluxes on reflective faces. We can decompose the boundary operator into two

parts, one for vacuum and source conditions, B0, and the other for reflective conditions, BR,

Bψm =

[

B0 BR

]







ψ0,m

ψR,m






. (18)

where the angular fluxes ψ0,m are those on the boundary faces of the mesh with source or vacuum conditions

and ψR,m are those on reflective boundary faces. The scattering operator is then augmented by the reflection

operator as

S̃φ̃ =

[

S BR

]







φ

ψR,m






. (19)

Similarly, the error estimate calculation in the DSA algorithm also is modified to account for reflection.
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In that case, the scattering operator also includes a projection of the residual in the scalar fluxes composed

from the angular fluxes on the reflective boundary faces. The angular fluxes are subsequently corrected based

on the diffusion equation solution. See Ref. 1 for more details. This discussion of the reflective conditions

is presented to complete our abstract operator notation and to indicate why and how the scalar flux vector

is augmented with the reflective boundary angular fluxes. Beyond that, no special treatment of reflective

boundary conditions is necesssary if the Krylov method is “wrapped around” the original source iteration

algorithm as we described before.

2.3.3 Inner–outer iterations.

The DSA preconditioning of the Krylov iterative solution involves an inner conjugate gradient iteration for

every outer iteration. The question of how to best implement combined inner–outer Krylov method iterations

is an area of recent interest. There are two main considerations. The first is how the preconditioned Krylov

subspace is constructed when the preconditioner can change or some other approximation is made that

varies from iteration to iteration. This may be the case, for instance, when the preconditioner involves

solving another linear system with an inner iteration computed to some tolerance, as in our case. This is

addressed by saving the preconditioned vectors from iteration to iteration as implemented the flexible variants

of Krylov methods that have been recently developed.21,22 The second consideration is how to choose the

inner iteration tolerance when using a nested pair of inner–outer Krylov methods so that the fewest inner

iterations may be taken without affecting the outer iterative convergence too much in order to achieve the

best possible overall computational efficiency. This has been addressed recently in Ref. 23 for solutions in

which both the inner and outer method are CG. GMRES(m) is considered in Ref. 24. There, an inner

iteration is simulated by calculating the matrix–vector multiplies approximately by perturbing (structure

and size of) the original matrix at every GMRES iteration. Remarkably, they found that the perturbations

could grow significantly during the iterations as long as the initial Krylov vectors are computed to high

precision. That is, early in the outer iterative process the inner iterative solution needs to be computed to

a strict convergence tolerance which can then be relaxed as the outer iteration proceeds. We implemented

this idea in a way similar to that suggested in Ref. 24. We set the inner tolerance in inverse proportion to

the norm of the outer residual vector (or its iteratively computed approximation). At restart, however, the

inner solution should again be computed with high precision and the tolerance relaxed subsequently.

We have used both of these approaches in our solution method. In the results which follow, the inner

tolerance for the DSA conjugate gradient solution at outer iteration k is computed according to

γ =















1
10
ε if k mod m = 0

1
10

max(ε,min(1, ε/min(‖rk‖2, 1))) otherwise
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where ε is the tolerance for the outer iteration. We have found the factor of 1/10 to be conservative in that

this choice did not change the number of outer iterations needed to converge to ε with the inner iteration

tolerance fixed to ε/100 on the largest, most slowly converging problems. It may even be possible to relax

this factor in some cases. Combining this approach with the flexible version of GMRES(m), FGMRES(m),

enables the overall solution to be computed in the lowest possible number of iterations and with the least

number of inner iterations, at the cost of a bit more storage. We also found that we could minimize the

storage requirements by choosing the fairly low restart parameter of m = 10 without significantly affecting

the outer convergence, if at all.

3 NUMERICAL RESULTS

In this section we present the results of actual computations using the AttilaV2 DFEM first order transport

code. We will compare the Krylov iterations to source (Richardson) iterations, with and without precon-

ditioning using the partially consistent S–WLA DSA method. The first set of results are intended to show

that the Krylov method actually does restore the effectiveness of the partially consistent DSA scheme, rela-

tive to source iteration. The second set of results are for a two–material “duct” problem to illustrate both

how computational effort depends on scattering ratio and the total cross sections in the two regions in the

problem.

We will not consider the FCDSA method described in Ref. 2 and analyzed in Part I because the expense

associated with solving the consistently discretized P1 equations renders the method impractical, especially

when compared to the partially consistent S–WLA method. We will refer to traditional source iteration that

is accelerated by the S–WLA DSA method simply as “ASI”. The Krylov method approach will simply be

called “PGMRES”, which is FGMRES(10) preconditioned with the S–WLA algorithm. If acceleration or a

preconditioner are not used to accelerate the convergence of these iterations, respectively, then they will be

referred to as “SI” or “GMRES”.

The following stopping criteria is used in all the results presented here:

‖φ`+1 − φ`‖2

‖φ`+1‖2

≤ 10−5, (20)

or 2000 iterations. Convergence criteria for the diagonally–scaled PCG inner iterations of the S–WLA

algorithm is varied according to the size of the relative outer residual, as outlined in the previous section,

for the Krylov iteration solutions. It is fixed to 10−6 for the source iteration solutions. Initial scalar fluxes

are zero.

The first set of computations use same mesh illustrated in Fig. 1. consisting of a (10 × 10 × 10) grid of

cubes, 1.0 cm on a side, each divided into six tetrahedra of equal volume. The mesh contains two materials

with total cross sections σt,1 and σt,2 in the two halves of every cube (each half being comprised of three
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Figure 1: Two material mesh (indicated by the shading) consisting of a (10× 10× 10) grid of cubes, 1.0 cm
on a side, divided into six tetrahedra each.

tetrahedra). This is similar to the mesh used in Part I (Fig. 4, Part I) for comparing the spectral radii

from Fourier analysis to those measured with AttilaV2. Vacuum boundary conditions are applied on all

six boundary faces. We computed the solution for this problem with a scattering ratio of c = 0.9999 and

an isotropic source of unit strength distributed throughout the problem. The number of iterations for

σt,1 = 2−10, 20, 210 cm−1 with σt,2 = 2−10, . . . , 210 cm−1 is shown in Fig. 2. For this high scattering ratio,

the Fourier analysis for the S–WLA scheme in Part I (Fig. 2(d), Part I) showed that the spectral radius

approaches c as the difference in cross sections becomes large and This is reflected in the large number

of source iterations in Fig. 2. It is clear that PGMRES restores much of the effectiveness of the partially

consistent DSA method for the most slowly converging problems. Remarkably, PGMRES showed only a

small variation in the number of iterations over this wide range of σt,2, needing anywhere from two to more

than ten times fewer iterations than ASI to converge. Of course, this improvement comes at the extra cost

associated with the FGMRES(10) iterations.

We will now investigate whether the reduction in the iteration counts is worth the additional computa-

tional effort of the Krylov method. This aim will best be served by considering a realistic problem. In this

case, we will consider a duct problem consisting of a reflected quarter–cylinder, 25 cm in radius and 50 cm

long. The “thin” duct region is 5 cm in radius. It is surrounded by a “thick” region and bends around a

central disc of thick material. There is a unit isotropic boundary source incident on the left face of the duct.

12
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Figure 2: Iteration counts for FGMRES(10) (“GMRES”) and source iteration (“SI”) with the S–WLA
method for c = 0.9999.

Vacuum boundary conditions are specified the outer surfaces. The values of the total cross sections in the

thin region, σt,1, and the thick region, σt,2, as well as the scattering ratio c, will be varied to examine the

effect of material heterogeneities in a realistic problem. An isotropic source of strength 1.0−6 particles/cm3

is distributed throughout the problem to help smooth the solution. The geometric configuration for two dif-

ferent meshes are illustrated in Figs. 3 and 4. One mesh consists entirely of 31,481 well–shaped tetrahedral

cells, which we call the “Tet Mesh”. It is shown in Fig. 3. The other mesh has a layer of tetrahedra formed

from dividing prisms that have been extruded from the thin region boundary into the thick region. We call

this the “Prism Mesh”. It contains 118,211 cells and is shown in Fig. 4.

The number of iterations and the measured number of floating point operations (FLOP) on a single SGI

Origin 2000 250 MHz CPU are tabulated below. The results for ASI and PGMRES on the Tet Mesh are shown

in Tables 1 and 2. These results may be compared to the results for SI and GMRES (no DSA accleration or

preconditioning) on the Tet Mesh shown in Tables 3 and 4. The results for ASI and PGMRES on the Prism

Mesh are shown Tables 5 and 6. Each table contains data for both solution methods for various values of

thin (σt,1) and thick (σt,2) region cross sections and scattering ratios c = 1.0000, 0.9999, 0.999, 0.99, 0.9.

The most apparent and important observation is that PGMRES significantly reduces the number of

iterations needed for convergence compared to ASI. This improvement in iteration count offsets any extra

13



Figure 3: The Tet Mesh problem.

Figure 4: The Prism mesh problem. Note the layers of tetrahedra surrounding the duct formed from prisms
extruded into the surrounding thick material.
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computational effort associated with FGMRES(10), in all the cases shown here. The savings in compuational

effort compares more favorably as the scattering ratio c approaches 1.0 and S–WLA becomes less effective.

While PGMRES needed less computational effort even for the lowest value of c = 0.9 considered here, there

is most likely going to be a point at which ASI, because it costs less per iteration than FGMRES(10), will

compute a solution with less effort. However, as c approaches zero DSA isn’t really needed anyway. It is

notable that the results that FGMRES(10) alone, without the S–WLA preconditioner, does in fact accelerate

the transport iterations. In some cases it even performs as well as DSA–accelerated source iteration, although

we cannot conclude that this will be true in general. The results reported here are encouraging, especially

since PGMRES outperforms source iteration even in homogeneous problems with equal total cross sections.

Finally, as shown in Table 7 the additional memory required for FGMRES(10) is not unreasonable, only

about 50% greater than what is needed for the source iteration implementation.

4 CONCLUSIONS

The most remarkable observation from our numerical experiments is that the Krylov iterative method sig-

nificantly improves efficiency of SN transport calculations in problems for which a partially consistent but

efficiently–computed DSA method is otherwise ineffective. Convergence significantly improves when FGM-

RES is preconditioned with the S–WLA DSA method, relative to either source iteration that is accelerated

with S–WLA, or FGMRES without preconditioning.

The one–dimensional results reported in Refs. 3 and 4 both showed that preconditioned GMRES is very

effective in reducing the number of iterations compared to DSA accelerated source iteration. The computa-

tional mearurements in Ref. 4 indicated that the extra overhead associated with the Krylov method may not

warrant it’s use. Our results on three–dimensional, unstructured tetrahedral meshes agree with the conclu-

sion that preconditioned GMRES effectively reduces the iteration count relative to DSA acclerated source

iteration and that GMRES along, without preconditioning, improves convergence relative to unacclerated

source iterations. In contrast to these result, however, we found that any extra computational cost is out-

weighed by the reduction in the number of iterations. As c approaches zero, this relative advantage decreases

and traditional source iteration probably becomes more efficient. The additional storage requirements for

GMRES appear to be tolerable, a fact which should not change in time or energy dependent problems.

Our results also indicate that GMRES alone, without DSA, improves convergence relative to unaccelerated

source iteration for slowly converging problems. This confirms the suggestion in Refs.3 and 15 that GMRES

or some other Krylov method might be used to accelerate difficult problems in cases where the discretization

or other considerations prohibit the use of DSA. Most importantly, however, our work shows that a partially

consistent DSA method like the S–WLA method, serves as an excellent preconditioner for GMRES. This is

true even in situations where the partially consistent scheme is no longer effective as an acceleration scheme
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σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

45
43
25
10
4

618
513
222
41
9

36
34
30
19
8

403
378
291
136
28

14
14
14
13
8

71
71
69
56
28

5
5
5
5
5

14
14
14
14
12

10−2

1.0000
0.9999
0.999
0.99
0.9

36
31
19
9
4

379
305
121
34
8

29
28
24
16
7

267
251
193
85
23

13
13
13
12
8

59
58
57
46
23

5
5
5
5
5

13
13
12
12
11

10−1

1.0000
0.9999
0.999
0.99
0.9

19
19
17
9
4

112
106
83
29
8

17
17
15
13
7

86
81
67
53
19

9
9
9
8
6

27
27
26
23
17

4
4
4
4
4

9
9
9
9
8

100

1.0000
0.9999
0.999
0.99
0.9

14
15
14
9
5

58
66
59
25
10

11
11
12
10
6

37
38
39
34
16

6
6
6
6
5

14
14
14
14
12

4
4
4
4
4

8
8
8
8
7

101

1.0000
0.9999
0.999
0.99
0.9

11
10
10
8
6

30
36
37
24
15

9
9
9
9
7

26
27
30
27
16

6
6
6
6
6

13
13
13
13
12

102

1.0000
0.9999
0.999
0.99
0.9

11
13
13
11
7

35
43
48
37
18

11
11
11
10
7

34
34
34
31
18

103

1.0000
0.9999
0.999
0.99
0.9

21
13
12
9
4

49
50
44
28
10

Table 1: Computational results for the Tet Mesh. Number of iterations are tabulated for total cross sections
σt,1 and σt,2 (cm−1) and a range of scattering ratio c.
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σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

8.17
7.86
4.75
2.14
1.18

90.05
74.31
32.06
5.92
1.35

6.54
6.24
5.48
3.60
1.74

58.79
55.11
42.18
19.66
4.07

2.94
2.94
2.94
2.75
1.84

10.43
10.43
10.15
8.23
4.12

1.30
1.30
1.30
1.30
1.29

2.13
2.13
2.13
2.13
1.84

10−2

1.0000
0.9999
0.999
0.99
0.9

6.46
5.69
3.57
1.87
1.05

54.70
43.79
17.33
4.87
1.17

5.27
5.11
4.47
3.09
1.56

38.51
36.12
27.71
12.19
3.32

2.66
2.66
2.65
2.51
1.73

8.57
8.43
8.28
6.68
3.35

1.28
1.28
1.28
1.27
1.27

1.96
1.96
1.81
1.81
1.66

10−1

1.0000
0.9999
0.999
0.99
0.9

3.62
3.61
3.27
1.86
1.05

16.01
15.10
11.73
3.96
1.06

3.23
3.22
2.90
2.59
1.48

12.29
11.58
9.56
7.51
2.63

1.95
1.95
1.95
1.79
1.46

3.89
3.89
3.75
3.32
2.44

1.07
1.07
1.07
1.07
1.07

1.32
1.32
1.32
1.32
1.18

100

1.0000
0.9999
0.999
0.99
0.9

2.70
2.79
2.59
1.64
1.06

8.15
9.11
7.82
3.09
1.25

2.25
2.26
2.37
1.89
1.23

5.19
5.31
5.35
4.54
2.00

1.34
1.34
1.33
1.32
1.14

1.96
1.96
1.96
1.94
1.61

1.02
1.02
1.02
1.02
1.01

1.12
1.12
1.12
1.12
0.99

101

1.0000
0.9999
0.999
0.99
0.9

2.54
1.93
1.85
1.53
1.25

4.11
4.70
4.51
2.87
1.79

1.72
1.70
1.67
1.60
1.30

3.50
3.60
3.87
3.28
1.91

1.35
1.35
1.34
1.31
1.26

1.73
1.73
1.72
1.67
1.46

102

1.0000
0.9999
0.999
0.99
0.9

2.24
2.21
2.17
1.90
1.27

4.65
5.14
5.55
4.20
2.07

2.04
1.99
1.94
1.68
1.27

4.34
4.17
3.97
3.54
2.07

103

1.0000
0.9999
0.999
0.99
0.9

4.48
2.22
2.09
1.61
0.98

6.07
5.65
4.94
3.17
1.18

Table 2: Computational results for the Tet Mesh. FLOP counts (in billions) are tabulated for total cross
sections σt,1 and σt,2 (cm−1) and a range of scattering ratio c.
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σt,2

103 102 101 100

σt,1 c GMRES SI GMRES SI GMRES SI GMRES SI

10−3

1.0000
0.9999
0.999
0.99
0.9

112
88
33
12
4

n/c
n/c
n/c
486
59

350
316
85
30
10

n/c
n/c
n/c
441
67

43
42
41
28
12

606
601
553
310
60

8
8
8
8
7

28
28
28
27
22

10−2

1.0000
0.9999
0.999
0.99
0.9

325
108
42
13
5

n/c
n/c
n/c
486
59

319
213
92
33
10

n/c
n/c
n/c
441
67

46
46
44
29
13

607
601
553
310
60

8
8
8
8
7

28
28
28
27
22

10−1

1.0000
0.9999
0.999
0.99
0.9

156
93
50
18
6

n/c
n/c
n/c
485
59

322
269
116
35
12

n/c
n/c
n/c
441
67

45
44
42
29
13

609
603
555
311
60

8
8
8
8
7

28
28
28
27
22

100

1.0000
0.9999
0.999
0.99
0.9

1133
320
73
26
9

n/c
n/c
n/c
477
59

393
291
128
39
14

n/c
n/c
n/c
441
66

50
50
47
33
14

635
628
575
313
60

10
10
10
9
8

35
35
35
34
25

101

1.0000
0.9999
0.999
0.99
0.9

920
401
99
37
14

n/c
n/c
n/c
439
57

660
392
170
45
16

n/c
n/c
n/c
439
65

57
57
52
33
14

850
835
720
319
61

102

1.0000
0.9999
0.999
0.99
0.9

n/c
549
136
37
12

n/c
n/c
n/c
441
68

769
363
131
37
11

n/c
n/c
n/c
452
68

103

1.0000
0.9999
0.999
0.99
0.9

146
49
25
11
5

n/c
n/c
1776
511
81

Table 3: Computational results for the Tet Mesh without S–WLA preconditioning or accleration. Number
of iterations are tabulated for total cross sections σt,1 and σt,2 (cm−1) and a range of scattering
ratio c. An entry “n/c” indicates that the problem did not converge in 2000 iterations.
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σt,2

103 102 101 100

σt,1 c GMRES SI GMRES SI GMRES SI GMRES SI

10−3

1.0000
0.9999
0.999
0.99
0.9

14.73
11.60
4.65
1.98
0.93

n/c
n/c
n/c

50.74
6.23

44.43
40.14
11.04
4.09
1.57

n/c
n/c
n/c

46.05
7.07

5.94
5.83
5.71
3.98
1.99

63.25
62.72
57.72
32.39
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

10−2

1.0000
0.9999
0.999
0.99
0.9

41.20
13.90
5.66
1.99
0.96

n/c
n/c
n/c

50.74
6.23

40.33
27.09
11.93
4.50
1.56

n/c
n/c
n/c

46.05
7.07

6.15
6.15
5.91
3.98
2.01

63.35
62.72
57.72
32.39
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

10−1

1.0000
0.9999
0.999
0.99
0.9

20.21
12.27
6.77
2.69
1.17

n/c
n/c
n/c

50.63
6.23

40.75
34.04
14.87
4.72
1.89

n/c
n/c
n/c

46.05
7.07

6.18
6.06
5.83
4.10
2.11

63.56
62.93
57.93
32.50
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

100

1.0000
0.9999
0.999
0.99
0.9

142.68
40.51
9.54
3.59
1.43

n/c
n/c
n/c

49.80
6.23

49.88
37.05
16.41
5.22
2.11

n/c
n/c
n/c

46.05
6.96

6.63
6.63
6.27
4.54
2.12

66.27
65.54
60.01
32.71
6.34

1.57
1.57
1.57
1.45
1.32

3.73
3.73
3.73
3.63
2.69

101

1.0000
0.9999
0.999
0.99
0.9

118.08
51.70
13.05
5.13
2.22

n/c
n/c
n/c

45.84
6.02

83.66
49.88
21.78
6.03
2.35

n/c
n/c
n/c

45.84
6.86

7.70
7.70
7.11
4.66
2.22

88.68
87.11
75.13
33.33
6.44

102

1.0000
0.9999
0.999
0.99
0.9

252.58
69.78
17.47
4.99
1.89

n/c
n/c
n/c

46.05
7.17

97.31
46.15
16.93
5.00
1.78

n/c
n/c
n/c

47.19
7.17

103

1.0000
0.9999
0.999
0.99
0.9

19.14
6.68
3.61
1.87
1.05

n/c
n/c

185.19
53.34
8.53

Table 4: Computational results for the Tet Mesh without S–WLA preconditioning or accleration. FLOP
counts (in billions) are tabulated for total cross sections σt,1 and σt,2 (cm−1) and a range of scat-
tering ratio c. An entry “n/c” indicates that the problem did not converge in 2000 iterations.
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σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

21
25
24
18
9

123
131
110
80
28

17
17
15
12
8

121
113
88
53
23

12
12
12
11
7

53
53
52
42
22

5
5
5
5
5

14
14
14
14
12

10−2

1.0000
0.9999
0.999
0.99
0.9

21
25
24
19
9

108
119
107
80
28

17
16
14
12
8

107
99
77
47
21

11
11
11
10
7

46
46
45
37
19

5
5
5
5
5

13
13
13
13
11

10−1

1.0000
0.9999
0.999
0.99
0.9

19
24
23
17
9

78
104
103
79
28

12
12
12
10
8

55
52
43
31
19

9
8
8
7
6

25
25
24
19
13

4
4
4
4
4

9
9
9
9
8

100

1.0000
0.9999
0.999
0.99
0.9

17
20
19
16
8

76
104
102
79
28

10
10
10
10
8

30
31
32
31
20

5
5
5
5
5

11
11
11
11
10

4
4
4
4
4

8
8
8
8
7

101

1.0000
0.9999
0.999
0.99
0.9

21
21
21
17
9

87
114
115
88
31

10
10
10
10
8

32
33
35
35
24

6
6
6
6
6

13
13
13
13
11

102

1.0000
0.9999
0.999
0.99
0.9

22
25
25
19
11

111
146
156
109
34

13
12
13
12
9

42
43
45
44
27

103

1.0000
0.9999
0.999
0.99
0.9

31
31
29
21
11

145
182
173
109
36

Table 5: Computational results for the Prism Mesh. Number of iterations are tabulated for total cross
sections σt,1 and σt,2 (cm−1).
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σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

15.13
17.09
16.46
12.54
7.11

66.80
70.01
58.32
42.12
14.82

12.13
12.10
10.84
9.15
6.30

66.05
61.35
47.35
28.41
12.37

9.64
9.64
9.63
9.04
6.13

29.11
29.10
28.53
22.95
12.04

4.81
4.81
4.81
4.81
4.79

8.02
8.02
8.02
8.02
6.91

10−2

1.0000
0.9999
0.999
0.99
0.9

14.64
16.64
15.94
12.65
6.71

57.81
62.86
56.16
41.69
14.66

11.97
11.39
10.23
9.05
6.22

57.66
53.15
41.11
24.99
11.22

8.78
8.77
8.74
7.59
5.81

25.30
25.30
24.73
20.32
10.47

5.14
5.14
5.14
5.14
5.11

8.07
8.07
8.07
8.07
6.86

10−1

1.0000
0.9999
0.999
0.99
0.9

13.10
16.15
15.47
11.60
6.83

41.34
54.37
53.41
40.53
14.31

9.18
9.16
9.08
7.37
6.11

29.73
28.09
23.12
16.54
10.05

7.76
7.19
7.20
6.53
5.81

15.05
15.05
14.46
11.40
7.72

5.67
5.67
5.66
5.64
5.60

7.21
7.21
7.21
7.21
6.41

100

1.0000
0.9999
0.999
0.99
0.9

11.29
12.80
11.98
10.26
5.61

39.88
53.61
51.48
38.70
13.33

7.79
7.73
7.65
7.34
5.88

17.36
17.82
18.04
16.88
10.29

6.19
6.19
6.19
6.03
5.43

8.48
8.47
8.44
8.26
6.80

6.61
6.61
6.62
6.60
6.37

7.78
7.78
7.79
7.77
6.71

101

1.0000
0.9999
0.999
0.99
0.9

15.97
14.43
13.28
10.33
5.98

48.13
59.12
55.44
39.37
13.39

8.85
8.55
7.95
7.09
5.53

22.83
23.05
21.88
18.50
11.33

7.76
7.76
7.62
6.85
5.56

11.43
11.40
11.20
9.76
6.38

102

1.0000
0.9999
0.999
0.99
0.9

16.10
15.11
14.29
10.73
6.93

75.38
72.63
70.71
47.04
14.46

12.41
10.65
9.58
8.25
5.88

35.22
30.36
25.18
21.59
12.35

103

1.0000
0.9999
0.999
0.99
0.9

27.74
19.12
17.12
12.23
7.19

103.88
84.31
76.50
46.46
15.15

Table 6: Computational results for the Prism Mesh. FLOP counts (in billions) are tabulated for total cross
sections σt,1 and σt,2 (cm−1).

Mesh PGMRES GMRES ASI SI

Tet 276 246 181 178

Prism 925 840 639 632

Table 7: Approximate memory requirements (MB) measured on dedicated SGI Origin 2000 single processors
for the two duct problem meshes.
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for traditional source iteration.

It is worth noting again that the Krylov method approach can easily be implemented in transport codes

using the existing SN space and angle sweeps and other machinery already present in a given code. This

is true at least for multi–group energy dependence with downscatter. Although the results reported here

considered only isotropic scattering, the method is implemented for general scattering anisotropy. Higher

orders of scattering are easily accounted for by simply increasing the size of the Krylov vectors to include the

additional flux moments needed to compute the scattering source. The rest of the original code remaining

unchanged. It is also possible that outer iterations can be replaced by a Krylov iteration but this would

require more extensive modification. These considerations will be examined in the future.

There are many questions that remain. What is it about the eigenvalue (or singular value) distribution of

the preconditioned linear system corresponding to the transport operator that enables GMRES to improve

the effectiveness of otherwise degraded DSA methods? Could our conclusions change or the optimality

of both accelerated source iteration or the Krylov iterative method approach be improved if an (algebraic)

multigrid method is used to solve the continuous diffusion equation of the partially consistent method? What

is the effect on the accuracy of the converged Krylov method solution and how does this affect the solution

in deep penetration problems, for example? Finally, we emphasize that we have shown that this method

works very well for our particular discretization technique and DSA scheme on certain problems of interest

and for unstructured tetrahedral meshes. It will be interesting to find out how it performs with other types

of discretizations, DSA methods and meshes.
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